Bayesian Optimization on Manifolds via Graph Gaussian Processes

Hwanwoo Kim

University of Chicago

Joint work with D.Sanz-Alonso, R.Yang

2023 SIAM OP

June 2, 2023

Problem of Interest

We want to solve

$$\max_{x \in \mathcal{M}} f(x)$$

- an evaluation of the objective is computationally expensive.
- an evaluation can be corrupted by random noise.
- an explicit form of the objective is unknown.
- $\bullet~\mathcal{M}$ is smooth, connected, compact, and boundary-free.
- geometric information of the manifold such as chart, tangent space, Riemannian gradient, retraction map are unknown.
- a point cloud $\{x_1, \cdots, x_N\} \subset \mathcal{M} \subset \mathbb{R}^m, m \geq 2$ is available.

Problem of Interest

We want to solve

$$\max_{x \in \mathcal{M}} f(x)$$

- an evaluation of the objective is computationally expensive.
- an evaluation can be corrupted by random noise.
- an explicit form of the objective is unknown.
- \mathcal{M} is smooth, connected, compact, and boundary-free.
- geometric information of the manifold such as chart, tangent space, Riemannian gradient, retraction map are unknown.
- a point cloud $\{x_1, \cdots, x_N\} \subset \mathcal{M} \subset \mathbb{R}^m, m \geq 2$ is available.

Iterate the following steps:

- Given a set of data D = {(xℓ, f(xℓ) + ϵ)} composed of noisy function evaluations with evaluation locations, build a surrogate for the objective.
- Choose an additional query location for the function evaluation by maximizing an acquisition function.
 - Exploration: a point that the surrogate is the most uncertain of.
 - Exploitation: a point that attains a large surrogate function value.
 - Acquisition Function: a function that ensures the maximum balances exploration and exploitation.
- **③** Repeat the previous two steps for the total *L* number of iterations.
- Find the optimum of the surrogate among the observations.

Bayesian Optimization II: Illustration

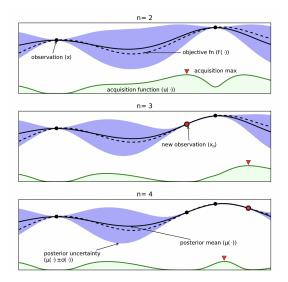


Figure: Illustration of the Bayesian optimization from [Shahriari et al., 2015]

- Given a set of data composed of noisy function evaluations with evaluation locations, build a surrogate for the objective.
 - put a Gaussian process prior to the objective function.
 - derive a posterior distribution of the objective function conditioning on all function evaluations obtained so far.
 - use the posterior mean $\mu(x|\mathcal{D})$ as a surrogate for the objective function.
 - \blacktriangleright Quantify uncertainties in the surrogate through the posterior variance $\sigma(x|\mathcal{D})$.

Bayesian Optimization: Acquisition Function

- Choose an additional query location for the function evaluation by maximizing an acquisition function.
 - Exploration: a point that the surrogate is the most uncertain of.
 - Exploitation: a point that attains a large surrogate function value.
 - Acquisition function: a function that ensures the maximum balances exploration and exploitation.
- \Rightarrow Upper Confidence Bound acquisition function:

 $\mu(x|\mathcal{D}) + B_{\ell} \cdot \sigma(x|\mathcal{D}),$

where B_{ℓ} is a parameter controlling the level of exploration.

Reminder: Problem of Interest

We want to solve

$$\max_{x \in \mathcal{M}} f(x)$$

- an evaluation of the objective is computationally expensive.
- an evaluation can be corrupted by random noise.
- an explicit form of the objective is unknown (possibly nonconvex, nonsmooth).
- \mathcal{M} is smooth, connected, compact, and boundary-free.
- geometric information of the manifold such as chart, tangent space, Riemannian gradient, retraction map are unknown.
- a point cloud $\{x_1, \cdots, x_N\} \subset \mathcal{M} \subset \mathbb{R}^m, m \geq 2$ is available.

Matérn-type Gaussian process on a manifold

If we know the closed manifold, define a Gaussian process on ${\mathcal M}$ given by

$$N(0, (\tau I - \Delta_{\mathcal{M}})^{-s})$$

where $\Delta_{\mathcal{M}}$ is the Laplace-Beltrami operator on \mathcal{M} , τ controls the inverse length scale and s is a sample smoothness parameter. By Karhunen-Loeve expansion, samples are of the form:

$$u^{\mathrm{Ma}} = \sum_{i=1}^{\infty} (\tau + \lambda_i)^{-\frac{s}{2}} \zeta_i \phi_i,$$

where $(\lambda_i, \phi_i)_{i=1}^{\infty}$ are the eigenpairs of $-\Delta_M$ and ζ_i is a standard Gaussian random variable [Sanz-Alonso and Yang, 2022, Borovitskiy et al., 2020].

Reminder: Problem of Interest

We want to solve

$$\max_{x \in \mathcal{M}} f(x)$$

- an evaluation of the objective is computationally expensive.
- an evaluation can be corrupted by random noise.
- an explicit form of the objective is unknown (possibly nonconvex, nonsmooth).
- \mathcal{M} is smooth, connected, compact, and boundary-free.
- geometric information of the manifold such as chart, tangent space, Riemannian gradient, retraction map are unknown.
- a point cloud $\{x_1, \cdots, x_N\} \subset \mathcal{M} \subset \mathbb{R}^m, m \geq 2$ is available.

Given a point cloud $\{x_1,\cdots,x_N\}$ on a manifold, the unnormalized graph Laplacian is given by

$$\Delta_N = D - W,$$

where W is a similarity matrix and

$$D = diag(D_{11}, \cdots, D_{NN}), \quad D_{ii} = \sum_{j=1}^{N} W_{ij}.$$

Graph-Gaussian process on a point cloud

Approximate the Matérn-type Gaussian process on \mathcal{M} through a graph-Gaussian process on $\{x_1, \cdots, x_N\}$, given by

$$N(0, (\tau I_N + \Delta_N)^{-s}),$$

where τ,s respectively control inverse length scale and smoothness of samples. Samples from the graph-Gaussian process are of the form

$$u_N^{\text{Ma}} = \sum_{i=1}^{k_N} (\tau + \lambda_{N,i})^{-\frac{s}{2}} \zeta_i \phi_{N,i},$$

where $(\lambda_{N,i}, \phi_{N,i})$ are the eigenpairs of the graph Laplacian Δ_N and $k_N \leq N$ is a truncation level [Sanz-Alonso and Yang, 2022].

Assumptions for the approximation result

• Suppose we use the pairwise similarity given by

$$W_{ij} = \frac{2(m+2)}{N\nu_m h_N^{m+2}} \mathbf{1}\{|x_i - x_j| < h_N\},\$$

where ν_m is the volume of *m*-dimensional unit ball and h_N is a graph connectivity parameter.

• The graph connectivity parameter h_N decays at a rate of $\left(\frac{\log N}{N}\right)^{\frac{1}{2m}}$.

• The truncation level k_N grows at a rate of $\left(\frac{N}{\log N}\right)^{\frac{1}{4s-6m+2}}$ with an assumption $s > \frac{3}{2}m - \frac{1}{2}$.

Approximation Result

Theorem (Approximation)

Assume the point cloud $\{x_1, \dots, x_N\}$ are i.i.d. samples from the uniform distribution on \mathcal{M} with $\operatorname{vol}(\mathcal{M}) = 1$, then with probability $1 - O(N^{-c})$ for some c > 0, there exists $T_N : \mathcal{M} \to \{x_1, \dots, x_N\}$ with $T_N(x_i) = x_i$ such that

$$\mathbb{E}||u_N^{Ma} \circ T_N - u^{Ma}||_{\infty} \le C \left(\frac{\log N}{N}\right)^{\frac{1}{4m}} =: \epsilon_N,$$

for some universal constant C > 0.

• Suppose the objective f is a realization of u^{Ma} and denote its restriction on the point cloud as f_N . If u_N is a realization of u_N^{Ma} , then we have

$$||u_N - f_N||_{\infty} \le \delta^{-1} \epsilon_N,$$

with probability $1 - \delta$.

• More detailed analyses are provided in the paper [Kim et al., 2022].

Simple Regret Bound

Theorem (Regret Bound)

Suppose the objective function f is a realization of u^{Ma} . Applying the Bayesian optimization algorithm with graph-Gaussian process with $B_{\ell} = \sqrt{2 \log \left(\frac{\pi^2 \ell^2 N}{6\delta}\right)} + \frac{\epsilon_N \sqrt{\ell-1}}{\delta \sigma} \text{ yields the following simple regret:}$ $\max_{z \in \mathcal{M}} f(z) - \max_{z \in \mathcal{Z}_L} f(z) = \tilde{O}\left((L^{-\frac{1}{2}} + \epsilon_N)\sqrt{k_N}\right)$ where $\mathcal{Z}_L = \{z_1, \cdots, z_L\}$ is the set of all query points after L iterations.

- For a fixed N with $L\to\infty,$ the simple regret will decrease towards the approximation error.
- As both N and L tend to infinity while L << N, one can recover the global maximizer of f.

Cow Manifold: No Chart

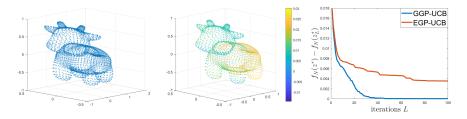


Figure: (a) Point cloud with N = 2000. (b) A random sample $f_{\bar{N}}$ from $u_{\bar{N}}^{\text{Ma}}$ with $\tau_* = 5, s_* = 2.5, \bar{N} = 2930$; values of $f_{\bar{N}}$ vary smoothly along the point cloud. (c) Comparison of simple regrets as a function of L between GGP-UCB and EGP-UCB. The results are averaged over 50 trials.

Heat Inversion: Expensive Function evaluations I

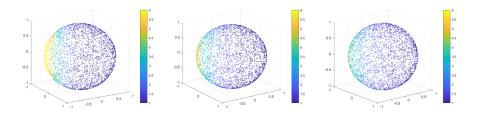


Figure: (a) Initial heat over the point cloud of size N = 3000. (b) Noisy corrupted heat configuration at t = 0.25. (c) Noisy corrupted heat configuration at t = 0.4.

Heat Inversion: Expensive Function evaluations II

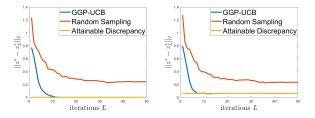


Figure: Comparison of $||z^* - z_L^*||_2$ between GGP-UCB and random sampling for (a) t = 0.25 and (b) t = 0.4. The results are averaged over 50 trials.

Conclusion

- We introduced a graph Gaussian process defined on a point cloud to approximate the Matérn-type Gaussian process on a manifold.
- Maximum value obtained through BO based on graph Gaussian process over the point cloud gets closer to the maximum value of the objective function on a manifold as the size of point cloud and iteration of BO increases, for some class of objective functions *f*.
- More clever way to leverage geometric structure in acquisition function maximization would improve efficiency.
- Looking for cool applications!

References

Borovitskiy, V., Terenin, A., Mostowsky, P., et al. (2020).
Matérn gaussian processes on riemannian manifolds.
Advances in Neural Information Processing Systems, 33:12426–12437.
Kim, H., Sanz-Alonso, D., and Yang, R. (2022).

Optimization on manifolds via graph gaussian processes.

arXiv preprint arXiv:2210.10962.

Sanz-Alonso, D. and Yang, R. (2022).

The spde approach to matérn fields: Graph representations. *Statistical Science*, 37(4):519–540.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2015). Taking the human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):148–175.