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Problem of Interest

We want to solve
max
x∈M

f(x)

where

an evaluation of the objective is computationally expensive.

an evaluation can be corrupted by random noise.

an explicit form of the objective is unknown.

M is smooth, connected, compact, and boundary-free.

geometric information of the manifold such as chart, tangent space,
Riemannian gradient, retraction map are unknown.

a point cloud {x1, · · · , xN} ⊂ M ⊂ Rm,m ≥ 2 is available.
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Bayesian Optimization I

Iterate the following steps:

1 Given a set of data D = {(xℓ, f(xℓ) + ϵ)} composed of noisy function
evaluations with evaluation locations, build a surrogate for the
objective.

2 Choose an additional query location for the function evaluation by
maximizing an acquisition function.

▶ Exploration: a point that the surrogate is the most uncertain of.
▶ Exploitation: a point that attains a large surrogate function value.
▶ Acquisition Function: a function that ensures the maximum balances

exploration and exploitation.

3 Repeat the previous two steps for the total L number of iterations.

4 Find the optimum of the surrogate among the observations.
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Bayesian Optimization II: Illustration

Figure: Illustration of the Bayesian optimization from [Shahriari et al., 2015]
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Bayesian Optimization: GP Surrogate

1 Given a set of data composed of noisy function evaluations with
evaluation locations, build a surrogate for the objective.

▶ put a Gaussian process prior to the objective function.
▶ derive a posterior distribution of the objective function conditioning on

all function evaluations obtained so far.
▶ use the posterior mean µ(x|D) as a surrogate for the objective function.
▶ Quantify uncertainties in the surrogate through the posterior variance

σ(x|D) .
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Bayesian Optimization: Acquisition Function

2 Choose an additional query location for the function evaluation by
maximizing an acquisition function.

▶ Exploration: a point that the surrogate is the most uncertain of.
▶ Exploitation: a point that attains a large surrogate function value.
▶ Acquisition function: a function that ensures the maximum balances

exploration and exploitation.

⇒ Upper Confidence Bound acquisition function:

µ(x|D) +Bℓ · σ(x|D),

where Bℓ is a parameter controlling the level of exploration.
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Reminder: Problem of Interest

We want to solve
max
x∈M

f(x)

where

an evaluation of the objective is computationally expensive.

an evaluation can be corrupted by random noise.

an explicit form of the objective is unknown (possibly nonconvex,
nonsmooth).

M is smooth, connected, compact, and boundary-free.

geometric information of the manifold such as chart, tangent space,
Riemannian gradient, retraction map are unknown.

a point cloud {x1, · · · , xN} ⊂ M ⊂ Rm,m ≥ 2 is available.
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Matérn-type Gaussian process on a manifold

If we know the closed manifold, define a Gaussian process on M given by

N(0, (τI −∆M)−s)

where ∆M is the Laplace-Beltrami operator on M, τ controls the inverse
length scale and s is a sample smoothness parameter. By Karhunen-Loeve
expansion, samples are of the form:

uMa =

∞∑
i=1

(τ + λi)
− s

2 ζiϕi,

where (λi, ϕi)
∞
i=1 are the eigenpairs of −∆M and ζi is a standard Gaussian

random variable [Sanz-Alonso and Yang, 2022, Borovitskiy et al., 2020].
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Graph Laplacian

Given a point cloud {x1, · · · , xN} on a manifold, the unnormalized graph
Laplacian is given by

∆N = D −W,

where W is a similarity matrix and

D = diag(D11, · · · , DNN ), Dii =
N∑
j=1

Wij .

11 / 20



Graph-Gaussian process on a point cloud

Approximate the Matérn-type Gaussian process on M through a
graph-Gaussian process on {x1, · · · , xN}, given by

N(0, (τIN +∆N )−s),

where τ, s respectively control inverse length scale and smoothness of
samples. Samples from the graph-Gaussian process are of the form

uMa
N =

kN∑
i=1

(τ + λN,i)
− s

2 ζiϕN,i,

where (λN,i, ϕN,i) are the eigenpairs of the graph Laplacian ∆N and
kN ≤ N is a truncation level [Sanz-Alonso and Yang, 2022].
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Assumptions for the approximation result

Suppose we use the pairwise similarity given by

Wij =
2(m+ 2)

Nνmhm+2
N

1{|xi − xj | < hN},

where νm is the volume of m-dimensional unit ball and hN is a graph
connectivity parameter.

The graph connectivity parameter hN decays at a rate of
(
logN
N

) 1
2m

.

The truncation level kN grows at a rate of
(

N
logN

) 1
4s−6m+2

with an

assumption s > 3
2m− 1

2 .
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Approximation Result

Theorem (Approximation)

Assume the point cloud {x1, · · · , xN} are i.i.d. samples from the uniform
distribution on M with vol(M) = 1, then with probability 1−O(N−c) for
some c > 0, there exists TN : M → {x1, · · · , xN} with TN (xi) = xi such
that

E||uMa
N ◦ TN − uMa||∞ ≤ C

(
logN

N

) 1
4m

=: ϵN ,

for some universal constant C > 0.

Suppose the objective f is a realization of uMa and denote its
restriction on the point cloud as fN . If uN is a realization of uMa

N ,
then we have

||uN − fN ||∞ ≤ δ−1ϵN ,

with probability 1− δ.

More detailed analyses are provided in the paper [Kim et al., 2022].
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Simple Regret Bound

Theorem (Regret Bound)

Suppose the objective function f is a realization of uMa. Applying the
Bayesian optimization algorithm with graph-Gaussian process with

Bℓ =

√
2 log

(
π2ℓ2N

6δ

)
+ ϵN

√
ℓ−1

δσ yields the following simple regret:

max
z∈M

f(z)− max
z∈ZL

f(z) = Õ
(
(L− 1

2 + ϵN )
√

kN

)
where ZL = {z1, · · · , zL} is the set of all query points after L iterations.

For a fixed N with L → ∞, the simple regret will decrease towards
the approximation error.

As both N and L tend to infinity while L << N , one can recover the
global maximizer of f .
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Cow Manifold: No Chart

Figure: (a) Point cloud with N = 2000. (b) A random sample fN̄ from uMa
N̄

with
τ∗ = 5, s∗ = 2.5, N̄ = 2930; values of fN̄ vary smoothly along the point cloud.
(c) Comparison of simple regrets as a function of L between GGP-UCB and
EGP-UCB. The results are averaged over 50 trials.
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Heat Inversion: Expensive Function evaluations I

Figure: (a) Initial heat over the point cloud of size N = 3000. (b) Noisy corrupted
heat configuration at t = 0.25. (c) Noisy corrupted heat configuration at t = 0.4.
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Heat Inversion: Expensive Function evaluations II

Figure: Comparison of ∥z∗ − z∗L∥2 between GGP-UCB and random sampling for
(a) t = 0.25 and (b) t = 0.4. The results are averaged over 50 trials.
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Conclusion

We introduced a graph Gaussian process defined on a point cloud to
approximate the Matérn-type Gaussian process on a manifold.

Maximum value obtained through BO based on graph Gaussian
process over the point cloud gets closer to the maximum value of the
objective function on a manifold as the size of point cloud and
iteration of BO increases, for some class of objective functions f .

More clever way to leverage geometric structure in acquisition
function maximization would improve efficiency.

Looking for cool applications!
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