Bayesian Optimization on Manifolds

via Graph Gaussian Processes

Hwanwoo Kim

University of Chicago
Joint work with D.Sanz-Alonso, R.Yang

2023 SIAM OP

June 2, 2023

1/20



Problem of Interest

We want to solve

max f(z)

where

an evaluation of the objective is computationally expensive.
an evaluation can be corrupted by random noise.

an explicit form of the objective is unknown.

M is smooth, connected, compact, and boundary-free.

geometric information of the manifold such as chart, tangent space,
Riemannian gradient, retraction map are unknown.

a point cloud {z1, - ,2x} C M C R™,m > 2 is available.
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Bayesian Optimization |

Iterate the following steps:

o

Given a set of data D = {(xy, f(z¢) + €)} composed of noisy function
evaluations with evaluation locations, build a surrogate for the
objective.

Choose an additional query location for the function evaluation by
maximizing an acquisition function.

» Exploration: a point that the surrogate is the most uncertain of.

» Exploitation: a point that attains a large surrogate function value.

» Acquisition Function: a function that ensures the maximum balances
exploration and exploitation.

Repeat the previous two steps for the total L number of iterations.

Find the optimum of the surrogate among the observations.
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Bayesian Optimization |I: lllustration
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Figure: lllustration of the Bayesian optimization from [Shahriari et al., 2015]
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Bayesian Optimization: GP Surrogate

@ Given a set of data composed of noisy function evaluations with
evaluation locations, build a surrogate for the objective.
» put a Gaussian process prior to the objective function.
» derive a posterior distribution of the objective function conditioning on
all function evaluations obtained so far.
» use the posterior mean p(x|D) as a surrogate for the objective function.
» Quantify uncertainties in the surrogate through the posterior variance

o(z|D) .
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Bayesian Optimization: Acquisition Function

@ Choose an additional query location for the function evaluation by
maximizing an acquisition function.
» Exploration: a point that the surrogate is the most uncertain of.
» Exploitation: a point that attains a large surrogate function value.
» Acquisition function: a function that ensures the maximum balances
exploration and exploitation.

= Upper Confidence Bound acquisition function:
u(|D) + By - o(2|D),

where By is a parameter controlling the level of exploration.
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Reminder: Problem of Interest

We want to solve

max f(z)

where

an evaluation of the objective is computationally expensive.
an evaluation can be corrupted by random noise.

an explicit form of the objective is unknown (possibly nonconvex,
nonsmooth).

M is smooth, connected, compact, and boundary-free.

geometric information of the manifold such as chart, tangent space,
Riemannian gradient, retraction map are unknown.

a point cloud {z1,--- ,zx} C M C R™,m > 2 is available.
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Matérn-type Gaussian process on a manifold

If we know the closed manifold, define a Gaussian process on M given by
N0, (7] = Ap) ™)

where Ay, is the Laplace-Beltrami operator on M, 7 controls the inverse
length scale and s is a sample smoothness parameter. By Karhunen-Loeve
expansion, samples are of the form:

o0

WM =S (T N) G,

=1

where (A, ;)72 are the eigenpairs of —A x4 and (; is a standard Gaussian
random variable [Sanz-Alonso and Yang, 2022, Borovitskiy et al., 2020].
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Reminder: Problem of Interest

We want to solve

max f(z)

where
@ an evaluation of the objective is computationally expensive.
@ an evaluation can be corrupted by random noise.

@ an explicit form of the objective is unknown (possibly nonconvex,
nonsmooth).

M is smooth, connected, compact, and boundary-free.

geometric information of the manifold such as chart, tangent space,
Riemannian gradient, retraction map are unknown.

a point cloud {x1, -+ ,xny} C M C R™,m > 2 is available.
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Graph Laplacian

Given a point cloud {z1, -+ ,xx} on a manifold, the unnormalized graph
Laplacian is given by

Ay =D -W,

where W is a similarity matrix and

N
D =diag(D11,--- ,Dyy), Dy = ZWM.
j=1
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Graph-Gaussian process on a point cloud

Approximate the Matérn-type Gaussian process on M through a
graph-Gaussian process on {z1,--- ,zx}, given by

N(O, (TIN + AN)_S),

where T, s respectively control inverse length scale and smoothness of
samples. Samples from the graph-Gaussian process are of the form

kn

ul® = (7 + M) 2Gidn

=1

where (AN, ¢n,i) are the eigenpairs of the graph Laplacian Ay and
kn < N is a truncation level [Sanz-Alonso and Yang, 2022].
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Assumptions for the approximation result

@ Suppose we use the pairwise similarity given by

2(m+2)

W —
" ]\fymh’;\}“|r2

1{‘15‘71 - J"]| < h’N}’

where v, is the volume of m-dimensional unit ball and hy is a graph
connectivity parameter.
1

.. log N \ 2m
@ The graph connectivity parameter hy decays at a rate of ( X ) .

1
. Is—6m+2 .
@ The truncation level ky grows at a rate of (lo]gVN> TP with an
1

assumption s > %m — 3.
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Approximation Result

Theorem (Approximation)

Assume the point cloud {x1,--- ,xn} are i.i.d. samples from the uniform
distribution on M with vol(M) = 1, then with probability 1 — O(N~¢) for
some ¢ > 0, there exists Ty : M — {z1,--- ,xn} with Ty (x;) = x; such
that

1
log N\ 4m
E\|u%“oTN—uM“Hoosc(°§V ) -

for some universal constant C' > 0.

@ Suppose the objective f is a realization of ©™?® and denote its

restriction on the point cloud as fy. If uy is a realization of u%a,
then we have

lun = filloo <07 en,
with probability 1 — §.
@ More detailed analyses are provided in the paper [Kim et al., 2022].
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Simple Regret Bound

Theorem (Regret Bound)

Suppose the objective function f is a realization of uM®. Applying the
Bayesian optimization algorithm with graph-Gaussian process with

By 2log (“ P ) + \/7 yields the following simple regret:

max f(2) — max f(2) = O ((L7% +ex)V/kw)

ZEZ],

where Z;, = {z1,--- ,zp} is the set of all query points after L iterations.

o For a fixed N with L — oo, the simple regret will decrease towards
the approximation error.

@ As both N and L tend to infinity while L. << N, one can recover the
global maximizer of f.
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Cow Manifold: No Chart
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Figure: (a) Point cloud with N' = 2000. (b) A random sample fx from u}}* with
Te = B, 5, = 2.5, N = 2930; values of fg5 vary smoothly along the point cloud.
(c) Comparison of simple regrets as a function of L between GGP-UCB and
EGP-UCB. The results are averaged over 50 trials.
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Heat Inversion: Expensive Function evaluations |

Figure: (a) Initial heat over the point cloud of size N = 3000. (b) Noisy corrupted
heat configuration at ¢ = 0.25. (c) Noisy corrupted heat configuration at ¢t = 0.4.
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Heat Inversion: Expensive Function evaluations Il
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Figure: Comparison of ||z* — 2} || between GGP-UCB and random sampling for
(a) t =0.25 and (b) t = 0.4. The results are averaged over 50 trials.
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Conclusion

@ We introduced a graph Gaussian process defined on a point cloud to
approximate the Matérn-type Gaussian process on a manifold.

@ Maximum value obtained through BO based on graph Gaussian
process over the point cloud gets closer to the maximum value of the
objective function on a manifold as the size of point cloud and
iteration of BO increases, for some class of objective functions f.

@ More clever way to leverage geometric structure in acquisition
function maximization would improve efficiency.

@ Looking for cool applications!
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