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Problem Setup

Given data y of the form
Yy = g(u) +n,0n NN(OvF)v

where G : RY — R"™ and T' € R™ " are known,
@ Point estimation of w under sparsity assumption?

@ Uncertainty quantification of u?

2/17



Outline

© Hierarchical Bayesian Model
@ lterative Alternating Scheme (IAS)
© /;-regularized Iterative Ensemble Kalman Filter (¢1-1EKF)

© Numerical Examples
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Hierarchical Bayesian Model

Data generating model (Likelihood) = y|u ~ N (G(u),T)
Bayesian framework = |6 ~ N (0, Dy), Dy = diag(6)
Hierarchical setup = 6; ~ Gamma(a, 5), 1 <i<d

Ultimate objective: Posterior distribution p(u, 6|y)
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Posterior Distribution

~ p(ylu, 0)p(ulf)p(9)

o< exp(—J(u, 0)),

where (a)

AN

1 1 ) )
J(,0) = S lly = Gu)lIf + 5 ulb, + 30 [9 —(8-3) 108 9]

(b)
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lterative Alternating Scheme (IAS)

When G(u) is linear, i.e., G(u) = Au for some matrix A,
@ Initialize ¢°, k = 0.
@ lterate until convergence:
@ Main parameter update:

uF ! = arg min J(u, 0%)

1 , 1.
= argmin glly — Aullp + S lullp,
=(A'T'A+ D) ATy,

@ Variance parameter(regularization) update:

0F ! = arg min J(uF Tt )

3 32 k+1y2 _
—a<§+ %ﬂ“;a) ) B=5-3/2
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Extensions of IAS

o More details in [Calvetti et al., 2019].

@ Variational approximation of the posterior allows one to build
approximate credible intervals. = VIAS [Agrawal et al., 2022]

@ Nonlinear extension = /¢;-regularized |IEKF [Kim et al., 2023]

7/17



Iterative Ensemble Kalman Filter (IEKF)

Newton trajectory Continuum Newton trajectory Continuum ensemble trajectory Discrete ensemble trajectory
N

- -0
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x x

IEKF is a sequential nonlinear optimization method.

Introduce an initial ensemble (a set of particles).

Particles are roughly updated according to a trajectory of
Gauss-Newton iterates.

After sufficient number of iterations, particles will be centered around
the optimum.

The sample mean of these particles will be our solution.
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l1-regularized IEKF

@ In the main parameter update step:
arg min §I|y —G(u)|p + §HU||D§,

employ IEKF, an ensemble-based nonlinear optimization method.

@ Combined with the variance parameter update, one can promote
sparse structure in the solution: ¢;-regularized version of IEKF.

@ Stronger {,.-regularization is possible with a generalized gamma
hyperprior.

@ Utilize particles to build approximate credible intervals.
@ More details in [Kim et al., 2023].
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Example 1: First order PDE inversion |

Consider the following partial differential equation
O3,V — Oz, — u(z1)v = 0, (x1,22) € (0,1) x (0,1),
U(CCl,O) = ¢($1), T € [07 1]
If u is continuous and ¢ is continuously differentiable, then it admits the

solution
1

o(z1,32) = B(21 + 72) exp (/x u(z)dz) .

With ¢(z) = cos(z), the data y is obtained according to

1+x2

y(r1,19) = v(z1,29) + 6, €~ N(0,0.1%).
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Example 1: first order PDE inversion I

Our goal is to recover the function u given the data y. We further assume
that v admits a representation

30 30
u(z) = Zuj sin(jmax) + Zﬂj cos(jmzx), = € [0,1],
j=1 j=1

: 130 ~ 130
with only three components of {u;};2; and {%;};2; are nonzero.
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Example 1: first order PDE inversion Il
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Figure: Red: target function to recover. Blue: /i-recovery. Left column: vanilla
version. Middle column: fi-recovery after one outer iteration. Right column:
£y-recovery after three outer iterations. Shaded: 2.5/97.5 percentile of the
recovery.
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Example 2: Subsurface flow inversion |

Consider the elliptic PDE, given by

—div(e“(x)Vv(x)) = f(z), z = (x1,22) € [0,1] X

with boundary conditions

0 v
v(z1,0) = 100, 871(1,:162) =0, —" )a (0, z2) = 500,
and source term
0 0<a <3,
f@)=flm,29) =137 2 <ay <3,
274 Z2<ap <1

[0,1]

ov

1) =
al'g(xl, ) 07

The domain is discretized in a uniform 15 x 15 grid in [0, 1] x [0, 1].
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Example 2: Subsurface flow inversion Il

@ Assume the log diffusion coefficient to be expressed as

19 19

(xlaxQ ZZU”LJ¢U x1>x2)

=0 j=0

where ¢;;(x1, x2) = cos(imzy) cos(jmaa).

@ Only six components of {ui,j}%?‘:o were chosen to be nonzero.

o We aim to recover {u;;};9_o € R' from the data

y(x1,29) = G(u(xr,22)) + 1 = v(w1,22) + 1,

evaluated along the grid with n ~ N(0,0.12).
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Example 2: Subsurface
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Figure: Parameter recovery for 2D-elliptic inverse problem based on ¢1-IEKF.

Red: Truth. Blue: ¢;-IEKF estimate. Left column: vanilla IEKF. Middle column:

{1-IEKF after three outer iterations. Right column: ¢1-IEKF after six outer
iterations. Shaded: elementwise 2.5/97.5 percentile for parameter estimate.



Summary

@ Hierarchical Bayesian model with gamma hyperprior to induce sparse
structure in parameter of interest.

@ Under the linear model setting, one can use coordinate descent or a
variational inference to approximate posterior distribution of the
target parameter.

@ Under the nonlinear model setting, one can use lterative Ensemble
Kalman Filter(IEKF) to solve for parameters and build approximate
credible intervals using particles.

@ Hierarchical Bayesian framework provides flexible regularizations tools
in IEKF.

e Codes available at: https://github.com/hwkim12
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