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Problem Setup

Given data y of the form

y = G(u) + η, η ∼ N (0,Γ),

where G : Rd → Rn and Γ ∈ Rn×n are known,

Point estimation of u under sparsity assumption?

Uncertainty quantification of u?
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Hierarchical Bayesian Model

Data generating model (Likelihood) =⇒ y|u ∼ N (G(u),Γ)
Bayesian framework =⇒ u|θ ∼ N (0, Dθ), Dθ = diag(θ)

Hierarchical setup =⇒ θi ∼ Gamma(α, β), 1 ≤ i ≤ d

Ultimate objective: Posterior distribution p(u, θ|y)
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Posterior Distribution

p(u, θ|y) = p(y|u, θ)p(u|θ)p(θ)
p(y)

∝ exp
(
−J(u, θ)

)
,

where

J(u, θ) :=

(a)︷ ︸︸ ︷
1

2
∥y − G(u)∥2Γ +

1

2
∥u∥2Dθ

+
∑d

i=1

[
θi
αi

−
(
β − 3

2

)
log θi

αi

]
.︸ ︷︷ ︸

(b)
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Iterative Alternating Scheme (IAS)

When G(u) is linear, i.e., G(u) = Au for some matrix A,

1 Initialize θ0, k = 0.
2 Iterate until convergence:

(i) Main parameter update:

uk+1 = argmin
u

J(u, θk)

= argmin
u

1

2
∥y −Au∥2Γ +

1

2
∥u∥2Dk

θ

= (A⊤Γ−1A+D−1
θk )−1A⊤Γ−1y.

(ii) Variance parameter(regularization) update:

θk+1 = argmin
θ

J(uk+1, θ)

= α

(
β̃

2
+

√
β̃2

4
+

(uk+1
i )2

2αi

)
, β̃ = β − 3/2.
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Extensions of IAS

More details in [Calvetti et al., 2019].

Variational approximation of the posterior allows one to build
approximate credible intervals. =⇒ VIAS [Agrawal et al., 2022]

Nonlinear extension =⇒ ℓ1-regularized IEKF [Kim et al., 2023]
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Iterative Ensemble Kalman Filter (IEKF)

IEKF is a sequential nonlinear optimization method.

Introduce an initial ensemble (a set of particles).

Particles are roughly updated according to a trajectory of
Gauss-Newton iterates.

After sufficient number of iterations, particles will be centered around
the optimum.

The sample mean of these particles will be our solution.
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ℓ1-regularized IEKF

In the main parameter update step:

argmin
u

1

2
∥y − G(u)∥2Γ +

1

2
∥u∥2

Dk
θ
,

employ IEKF, an ensemble-based nonlinear optimization method.

Combined with the variance parameter update, one can promote
sparse structure in the solution: ℓ1-regularized version of IEKF.

Stronger ℓp<1-regularization is possible with a generalized gamma
hyperprior.

Utilize particles to build approximate credible intervals.

More details in [Kim et al., 2023].
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Example 1: First order PDE inversion I

Consider the following partial differential equation

∂x1v − ∂x2v − u(x1)v = 0, (x1, x2) ∈ (0, 1)× (0, 1),

v(x1, 0) = ϕ(x1), x1 ∈ [0, 1].

If u is continuous and ϕ is continuously differentiable, then it admits the
solution

v(x1, x2) = ϕ(x1 + x2) exp

(∫ x1

x1+x2

u(z)dz

)
.

With ϕ(x) = cos(x), the data y is obtained according to

y(x1, x2) = v(x1, x2) + ϵ, ϵ ∼ N(0, 0.12).
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Example 1: first order PDE inversion II

Our goal is to recover the function u given the data y. We further assume
that u admits a representation

u(x) =

30∑
j=1

uj sin(jπx) +

30∑
j=1

ũj cos(jπx), x ∈ [0, 1],

with only three components of {uj}30j=1 and {ũj}30j=1 are nonzero.
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Example 1: first order PDE inversion III

Figure: Red: target function to recover. Blue: ℓ1-recovery. Left column: vanilla
version. Middle column: ℓ1-recovery after one outer iteration. Right column:
ℓ1-recovery after three outer iterations. Shaded: 2.5/97.5 percentile of the
recovery.
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Example 2: Subsurface flow inversion I

Consider the elliptic PDE, given by

−div
(
eu(x)∇v(x)

)
= f(x), x = (x1, x2) ∈ [0, 1]× [0, 1]

with boundary conditions

v(x1, 0) = 100,
∂v

∂x1
(1, x2) = 0, −eu(x)

∂v

∂x1
(0, x2) = 500,

∂v

∂x2
(x1, 1) = 0,

and source term

f(x) = f(x1, x2) =


0 0 ≤ x2 ≤ 4

6 ,

137 4
6 < x2 ≤ 5

6 ,

274 5
6 < x2 ≤ 1.

The domain is discretized in a uniform 15× 15 grid in [0, 1]× [0, 1].
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Example 2: Subsurface flow inversion II

Assume the log diffusion coefficient to be expressed as

u(x1, x2) =

19∑
i=0

19∑
j=0

uijϕij(x1, x2),

where ϕij(x1, x2) = cos(iπx1) cos(jπx2).

Only six components of {ui,j}19i,j=0 were chosen to be nonzero.

We aim to recover {ui,j}19i,j=0 ∈ R400 from the data

y(x1, x2) = G
(
u(x1, x2)

)
+ η = v(x1, x2) + η,

evaluated along the grid with η ∼ N(0, 0.12).
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Example 2: Subsurface flow inversion III

Figure: Parameter recovery for 2D-elliptic inverse problem based on ℓ1-IEKF.
Red: Truth. Blue: ℓ1-IEKF estimate. Left column: vanilla IEKF. Middle column:
ℓ1-IEKF after three outer iterations. Right column: ℓ1-IEKF after six outer
iterations. Shaded: elementwise 2.5/97.5 percentile for parameter estimate.
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Summary

Hierarchical Bayesian model with gamma hyperprior to induce sparse
structure in parameter of interest.

Under the linear model setting, one can use coordinate descent or a
variational inference to approximate posterior distribution of the
target parameter.

Under the nonlinear model setting, one can use Iterative Ensemble
Kalman Filter(IEKF) to solve for parameters and build approximate
credible intervals using particles.

Hierarchical Bayesian framework provides flexible regularizations tools
in IEKF.

Codes available at: https://github.com/hwkim12
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