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Overview
• We introduce two novel Bayesian Optimization (BO) algo-

rithms almost attaining the optimal simple regret bounds
in [Bul11].

• Our algorithms (GP-UCB+ and EXPLOIT+) share the sim-
plicity and ease of implementation of the standard BO al-
gorithm. In addition, EXPLOIT+ achieves competitive em-
pirical performance to existing BO algorithms without any
hyperparameter tuning.

Background
Goal Maximize a function f : X → R, where

• Mathematical expression of f is not necessarily known.
• f is not necessarily convex nor differentiable.
• Only source of information about f is through its evalua-

tions, which are typically expensive.

Gaussian Process Denote generic query locations by Xt =
{x1, . . . , xt} and the corresponding noise-free observations by
Ft = [f(x1), . . . , f(xt)]

⊤. Given a positive-definite kernel func-
tion k, Gaussian process interpolation with a prior GP(0, k)
yields the following posterior predictive mean and variance:

µt(x) = kt(x)
⊤K−1

tt Ft,

σ2
t (x) = k(x, x)− kt(x)

⊤K−1
tt kt(x),

where kt(x) = [k(x, x1), . . . , k(x, xt)]
⊤ and Ktt is a t × t matrix

with entries (Ktt)i,j = k(xi, xj).

Gaussian Process Upper Confidence Bound (GP-UCB)
Input: Kernel k; Total number of iterations T ; Initial query
locations X0; Initial noise-free observations F0

For t = 1, · · · , T :
1. Compute posterior mean/variance using all query loca-

tions and function evaluations (Xt−1, Ft−1).
2. Obtain xt = argmaxµt−1(x) + βtσt−1(x), for βt ∈ R+.
3. Set Xt = Xt−1 ∪ {xt}, Ft = Ft−1 ∪ {f(xt)}.

Output: argmaxx∈XT
f(x).

Performance Metric: The simple regret is defined as

st = max
X

f(x)− max
t=1,··· ,T

f(xt).

Optimal Regret Bounds
Under RKHS assumption: The best possible BO strategy
yields

sT = Θ
(
T− ν

d

)
for a Matérn kernel with smoothness parameter ν > 0 [Bul11].
The popular GP-UCB algorithm, with βt = ∥f∥Hk

, yields

sT =

O
(
T− ν

2ν+d log
ν

2ν+d T
)
,

O
(
T− 1

2 log
d+1
2 T

)
,

for Matérn and squared exponential kernels [LYT19].

GP-UCB+ & EXPLOIT+
Improved Exploration via Random Sampling

Input: Kernel k; Total number of iterations T ; Initial query
locations X0; Initial noise-free observations F0; Prob distribu-
tion P on X .
For t = 1, · · · , T :

1. Compute posterior mean/variance using all query loca-
tions and function evaluations (Xt−1, Ft−1).

2. Obtain
• GP-UCB+: xt = argmaxµt−1(x) + ∥f∥Hk

σt−1(x).
• EXPLOIT+: xt = argmaxµt−1(x) .

3. Sample x̃t ∼ P.

4. Set Xt = Xt−1 ∪ {xt, x̃t}, Ft = Ft−1 ∪ {f(xt), f(x̃t)}.
Output: argmaxx∈XT

f(x).

Under RKHS assumption: For a probability measure P with
a strictly positive density, both algorithm yields

EP [sT ] =

{
O
(
T− ν

d+ε
)
,

O
(
exp

(
−CT

1
d−ε

))
,

for Matérn and squared exponential kernels [KSA24]. Here, ε >
0 can be arbitrarily small.

Remark The exact rate by replacing the random sampling step
in GP-UCB+ and EXPLOIT+ with a more computationally ex-
pensive quasi-uniform sampling scheme.

Numerical Experiments
• We compare with other BO algorithms: Expected Im-

provement (EI), Probability of Improvement (PI), Pure Ex-
ploitation (EXPLOIT), and GP-UCB.

• The new algorithms need two noise-free observations per
iteration, but the methods we compare with only need
one; we run the new algorithms for half as many iterations
to ensure a fair comparison.

Benchmark Ackley function (10-dim):

Maximizing the range of garden sprinkler (8-dim)
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