

Bayesian Optimization with Noise-Free Observations: Improved Regret Bounds via Random Exploration

Hwanwoo Kim & Daniel Sanz-Alonso

Contact: hwanwoo.kim@duke.edu

Overview

- We introduce two novel Bayesian Optimization (BO) algorithms almost attaining the optimal simple regret bounds in [Bul11].
- Our algorithms (GP-UCB+ and EXPLOIT+) share the simplicity and ease of implementation of the standard BO algorithm. In addition, EXPLOIT+ achieves competitive empirical performance to existing BO algorithms without any hyperparameter tuning.

Background

Goal Maximize a function $f: \mathcal{X} \to \mathbb{R}$, where

- Mathematical expression of f is not necessarily known.
- *f* is not necessarily convex nor differentiable.
- Only source of information about *f* is through its evaluations, which are typically expensive.

Gaussian Process Denote generic query locations by $X_t = \{x_1, \ldots, x_t\}$ and the corresponding noise-free observations by $F_t = [f(x_1), \ldots, f(x_t)]^{\top}$. Given a positive-definite kernel function k, Gaussian process interpolation with a prior $\mathcal{GP}(0, k)$ yields the following posterior predictive mean and variance:

$$\mu_t(x) = k_t(x)^{\top} K_{tt}^{-1} F_t,$$

$$\sigma_t^2(x) = k(x, x) - k_t(x)^{\top} K_{tt}^{-1} k_t(x),$$

where $k_t(x) = [k(x, x_1), \dots, k(x, x_t)]^{\top}$ and K_{tt} is a $t \times t$ matrix with entries $(K_{tt})_{i,j} = k(x_i, x_j)$.

Gaussian Process Upper Confidence Bound (GP-UCB)

Input: Kernel k; Total number of iterations T; Initial query locations X_0 ; Initial noise-free observations F_0

- For $t = 1, \dots, T$:
 - 1. Compute posterior mean/variance using all query locations and function evaluations (X_{t-1}, F_{t-1}) .
 - 2. Obtain $x_t = \arg \max \mu_{t-1}(x) + \beta_t \sigma_{t-1}(x)$, for $\beta_t \in \mathbb{R}_+$.
 - 3. Set $X_t = X_{t-1} \cup \{x_t\}$, $F_t = F_{t-1} \cup \{f(x_t)\}$.

Output: $\arg \max_{x \in X_T} f(x)$.

Performance Metric: The simple regret is defined as

$$s_t = \max_{\mathcal{X}} f(x) - \max_{t=1,\dots,T} f(x_t).$$

Optimal Regret Bounds

Under RKHS assumption: The best possible BO strategy yields $s_T = \Theta\left(T^{-\frac{\nu}{d}}\right)$

for a Matérn kernel with smoothness parameter $\nu > 0$ [Bul11]. The popular GP-UCB algorithm, with $\beta_t = ||f||_{\mathcal{H}_k}$, yields

$$s_T = \begin{cases} \mathcal{O}\left(T^{-\frac{\nu}{2\nu+d}}\log^{\frac{\nu}{2\nu+d}}T\right), \\ \mathcal{O}\left(T^{-\frac{1}{2}}\log^{\frac{d+1}{2}}T\right), \end{cases}$$

for Matérn and squared exponential kernels [LYT19].

GP-UCB+ & EXPLOIT+

Improved Exploration via Random Sampling

Input: Kernel k; Total number of iterations T; Initial query locations X_0 ; Initial noise-free observations F_0 ; Prob distribution P on \mathcal{X} .

For $t = 1, \dots, T$:

- 1. Compute posterior mean/variance using all query locations and function evaluations (X_{t-1}, F_{t-1}) .
- 2. Obtain
 - GP-UCB+: $x_t = \arg \max \mu_{t-1}(x) + ||f||_{\mathcal{H}_k} \sigma_{t-1}(x).$
 - EXPLOIT+: $x_t = \arg \max \mu_{t-1}(x)$.
- 3. Sample $\tilde{x}_t \sim P$.
- 4. Set $X_t = X_{t-1} \cup \{x_t, \tilde{x}_t\}$, $F_t = F_{t-1} \cup \{f(x_t), f(\tilde{x}_t)\}$.

 Output: $\arg \max_{x \in X_T} f(x)$.

Under RKHS assumption: For a probability measure P with a strictly positive density, both algorithm yields

$$\mathbb{E}_{P}[s_{T}] = \begin{cases} \mathcal{O}\left(T^{-\frac{\nu}{d} + \varepsilon}\right), \\ \mathcal{O}\left(\exp\left(-CT^{\frac{1}{d} - \varepsilon}\right)\right), \end{cases}$$

for Matérn and squared exponential kernels [KSA24]. Here, $\varepsilon > 0$ can be arbitrarily small.

Remark The exact rate by replacing the random sampling step in GP-UCB+ and EXPLOIT+ with a more computationally expensive quasi-uniform sampling scheme.

Numerical Experiments

- We compare with other BO algorithms: Expected Improvement (EI), Probability of Improvement (PI), Pure Exploitation (EXPLOIT), and GP-UCB.
- The new algorithms need two noise-free observations per iteration, but the methods we compare with only need one; we run the new algorithms for half as many iterations to ensure a fair comparison.

Benchmark Ackley function (10-dim):

Maximizing the range of garden sprinkler (8-dim)

References

[Bul11] Adam D Bull. Convergence rates of efficient global optimization algorithms. *Journal of Machine Learning Research*, 12(10), 2011.

[KSA24] Hwanwoo Kim and Daniel Sanz-Alonso. Enhancing gaussian process surrogates for optimization and posterior approximation via random exploration. *arXiv* preprint arXiv:2401.17037, 2024.

[LYT19] Yueming Lyu, Yuan Yuan, and Ivor W Tsang. Efficient batch black-box optimization with deterministic regret bounds. *arXiv preprint arXiv:1905.10041*, 2019.