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Gaussian Process

GP(0,k) is a prior distribution over the space of continuous functions,
which reflects our initial knowledge on f

Conditioning on Dt = {(θ1, f(θ1)), · · · , (θt, f(θt))}, the posterior
mean and variance of the Gaussian process posterior are given by

µt(θ) = kt(θ)
⊤K−1

tt Ft,

σ2
t (θ) = k(θ, θ)− kt(θ)

⊤K−1
tt kt(θ),

where kt(θ) = [k(θ, θ1), . . . , k(θ, θt)]
⊤, Ktt is a t× t matrix with

entries (Ktt)i,j = k(θi, θj) and Ft = [f(θ1), . . . , f(θt)]
⊤

The posterior mean serves as our approximation for the objective
function f and the posterior variance quantifies how accurate the
approximation is
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Covariance Kernels

Matérn kernels with smoothness parameter ν and length scale
parameter ℓ, given by

k(θ, θ′) =
1

Γ(ν)2ν−1

(√
2ν∥θ − θ′∥

ℓ

)ν

Bν

(√
2ν∥θ − θ′∥

ℓ

)
,

where Bν is a modified Bessel function of the second kind
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Optimization Problem

Want to solve
max
θ∈Θ

f(θ)

where f : Θ ⊂ Rd → R, where
Θ is a compact search space

Only source of information on f is through its evaluation, which is
computationally expensive

Θt = {θ1, . . . , θt}: function evaluation locations

Ft = [f(θ1), . . . , f(θt)]
⊤: a vector of function evaluations on Θt

Examples: hyper-parameter tuning for large-scale neural network models, computer model
calibrations, MAP estimates under intractable likelihoods and etc
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Gaussian Process Upper Confidence Bound (GP-UCB)

Input: Kernel k; Total number of evaluations T ; Initial query locations
Θ0; Initial noise-free observations F0

For t = 1, · · · , T :
1 Compute posterior mean/variance using all query locations and

function evaluations (Θt−1, Ft−1)

2 Select a subsequent location to evaluate function f :

θt = argmax
θ∈Θ

µt−1(θ) + βtσt−1(θ),

where βt ∈ R+

3 Set Θt = Θt−1 ∪ {θt}, Ft = Ft−1 ∪ {f(θt)}
Output: argmaxθ∈ΘT

f(θ)

More details in (Srinivas, Krause, Kakade, & Seeger, 2009)
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Bayesian Optimization: First Iteration
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Bayesian Optimization: Second Iteration
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Bayesian Optimization: Third Iteration
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Bayesian Optimization: Fourth Iteration
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Bayesian Optimization: Fifth Iteration
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Performance Metric

Cumulative Regret: RT =
∑T

t=1(maxΘ f(θ)− f(θt))

Simple Regret: ST = maxΘ f(θ)−maxt=1,··· ,T f(θt)

Simple Regret (ST ) ≤ Averaged Cumulative Regret (RT /T )

Sublinear growth of RT leads to the convergence of ST

Convergence rate of ST is bounded by that of RT /T
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Existing Regret Bounds

(Lyu, Yuan, & Tsang, 2019) Under the reproducible kernel Hilbert
space (RKHS) objective function assumption, GP-UCB with
βt = ∥f∥Hk

yields

RT = Õ
(
T

ν+d
2ν+d

)
for Matérn kernel,

which implies,

ST = Õ
(
T

−ν
2ν+d

)
Optimal convergence rate (Bull, 2011): Under RKHS assumption, for
Matérn kernels with smoothness parameter ν > 0,

ST = Θ
(
T− ν

d

)
,

for the best strategy
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GP-UCB+ & EXPLOIT+ : Algorithm

Input: Kernel k; Total number of evaluations T ; Initial query locations
Θ0; Initial noise-free observations F0; Probability distribution P on Θ.
For t = 1, · · · , T/2:

1 Compute posterior mean/variance using all query locations and
function evaluations (Θt−1, Ft−1)

2 Obtain one location to evaluate a function f either through
▶ GP-UCB+: θt = argmaxµt−1(θ) + βtσt−1(θ)
▶ EXPLOIT+: θt = argmaxµt−1(θ)

3 Acquire another location to evaluate a function f via random
sampling θ̃t ∼ P

4 Set Θt = Θt−1 ∪ {θt, θ̃t}, Ft = Ft−1 ∪ {f(θt), f(θ̃t)}
Output: argmaxθ∈ΘT

f(θ)
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GP-UCB+ & EXPLOIT+ : Theory

Theorem (Kim and Sanz-Alonso, 2024)

Under RKHS assumption: With βt = ∥f∥Hk
, Matérn kernels with a

smoothness parameter ν > 0,

EP [ST ] = O
(
T− ν

d
+ε
)

where ε > 0 can be arbitrarily small. For squared exponential kernels,

EP [ST ] = O
(
exp

(
−CT

1
d
−ε
))

,

for some constant C > 0 with an arbitrarily small ε > 0
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Benchmark Function

Ackley function:

f(θ) = 20 exp

−1

5

√√√√1

d

d∑
i=1

(θi)2

+ exp

(
1

d

d∑
i=1

cos(2πθi)

)
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Numerical Results

Benchmark Ackley function (10-dim):
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Engineering Design Problem

Maximize the range of Garden sprinkler can water

How to tune parameters of the Garden sprinkler design? e.g., Vertical
nozzle angle, Tangential nozzle angle, Nozzle profile, Diameter of the
sprinkler head, Dynamic friction moment, Static friction moment,
Entrance pressure, Diameter flow line
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Numerical Results: Engineering Design

Blackbox Garden springkler function (8-dim):
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Optimization Algorithm as a Design Tool

Conditioning on the set of T points acquired from the Bayesian
optimization, approximate log-posterior through the posterior mean of
GP surrogate

What’s good about such approximation?
▶ The set of T points is more concentrated in the region of maxima due

to the nature of the optimization algorithm (compared to pure random
sampling)

▶ The set of T points explores a wider region of search space due to a
random sampling step (in comparison to standard Bayesian
optimization algorithms)

▶ Facilitates a cost-efficient Bayesian inference for parameters of
differential equations
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Example: Lorenz-63 Dynamics

Consider the Lorenz dynamics, given by

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz,

over time window [10, 200].

θ = (σ, ρ, β) is an unknown parameter we wish to infer.

Data given were generated with θ∗ = (10, 28, 8/3).

Imposed a Gaussian prior θ:

θ ∼ N ([10, 28.5, 2.7], diag([0.25, 2.25, 0.49])).

Total 400 design points were used.
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Lorenz-63 Dynamical System: Posterior MCMC Samples I
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Lorenz-63 Dynamical System: Posterior MCMC Samples II
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