Large-Scale Statistical Inference with Stochastic Gradient Descent

Hwanwoo Kim

University of Chicago

Joint work with Jerry Chee, Panos Toulis

2023 Joint Statistical Meetings

Aug 8, 2023

- $D_N = \{(X_i, Y_i)\}_{i=1}^N$: Observed data
- X_i: Covariate of unit i
- Y_i : Outcome variable of interest for unit i
- (X_i,Y_i) : i.i.d data distributed according to p_{θ_\star}
- $\ell(\theta; X, Y) = -\log p_{\theta}(X, Y)$: negative log-likelihood (loss)

Based on data, construct a confidence region $C_N(D_N)$ such that

$$\lim_{N \to \infty} \mathbb{P}(\theta_{\star} \in C_N(D_N)) \ge 1 - \alpha$$

for some desired significance level $\alpha \in (0, 1)$.

In standard approach, the construction relies on asymptotic result of the form $\sqrt{N}(\hat{\theta}_N - \theta_\star) \xrightarrow{d} N_p(0, F_\star^{-1})$, where $\hat{\theta}_N$ is the maximum likelihood estimator (MLE); i.e.,

$$\hat{\theta}_N = \arg\min_{\theta\in\Theta} \sum_{i=1}^N \ell(\theta; Y_i, X_i),$$

and $F_{\star} = \mathbb{E}[\nabla \ell(\theta_{\star}; Y, X) \nabla \ell(\theta_{\star}; Y, X)^{\top}]$ is the celebrated Fisher information matrix.

In large data set,

- Computation of $\hat{\theta}_N$ is expensive!
 - \blacktriangleright Newton-Raphson, EM algorithm, or quasi-Newton methods scales at a rate of $O(Np^{1+\epsilon})$
- Estimation of F_{\star} is notoriously challenging!
 - Standard estimators of covariance matrices do not scale well and are often ill-conditioned or non-invertible.

Iteratively defined as:

$$\theta_n = \theta_{n-1} - \gamma_n \nabla \ell(\theta_{n-1}; Y_{I_n}, X_{I_n}),$$

where $I_n \sim U\{1, \ldots, N\}$ is a random datapoint, γ_n is the learning rate sequence, and the gradient $\nabla \ell$ is with respect to θ .

- Under mild conditions, SGD converges to $\hat{\theta}_N$ as $n \to \infty$
- θ_N , the estimator obtained after N iterations is known as the one-pass SGD estimator.

Under regularity conditions, one-pass SGD satisfies [Toulis et al., 2017, Ljung et al., 1992]:

$$\sqrt{N}(\theta_N - \theta_\star) \xrightarrow{d} N_p(0, \Sigma_{\mathsf{SGD}}),$$

where

$$\Sigma_{\mathsf{SGD}} = \gamma_1^2 (2\gamma_1 F_\star - I)^{-1} F_\star.$$

(It is assumed that γ_1 is large enough such that $2\gamma_1 F_{\star} - I \succ 0$.)

Key idea

- The asymptotic covariance depends on the initial learning rate γ₁, which we can choose.
- The eigenvalues of Σ_{SGD} are of the form

$$\frac{\gamma_1^2 \lambda_j}{2\gamma_1 \lambda_j - 1},$$

where λ_j is the *j*th eigenvalue of the F_{\star} .

Notice

$$\lim_{\gamma_1 \to \infty} \frac{\gamma_1^2 \lambda_j}{2\gamma_1 \lambda_j - 1} / \left(\frac{\gamma_1}{2}\right) \to 1, \tag{1}$$

which implies the uniform bound on Σ_{SGD} .

• (1) is the basis of our key idea.

Backbone theory

Theorem

Let $\theta_{N,j}$, denote the *j*-th component of θ_N , for j = 1, ..., p. Suppose that $\gamma_1 \ge 1/\min_j \{\lambda_j\}$, then $\gamma_1 I - \Sigma_{SGD} \succ 0$. Define the interval

$$C_{N,j}(D_N) = \left[\theta_{N,j} - z_{\frac{\alpha}{2}}\sqrt{\frac{\gamma_1}{N}}, \ \theta_{N,j} + z_{\frac{\alpha}{2}}\sqrt{\frac{\gamma_1}{N}}\right]$$

where $z_{\frac{\alpha}{2}} = \Phi^{-1}(1 - \alpha/2)$ is the critical value of the standard normal. Then, for every j = 1, ..., p,

$$\liminf_{N \to \infty} P(\theta_{\star,j} \in C_{N,j}(D_N)) \ge 1 - \alpha.$$

 The key step in constructing confidence intervals is now the estimation of the minimum eigenvalue of F_⋆.

Plus-minus the learning rate

Data: D_N , Initial state: θ_0 , Significance level: $\alpha \in (0,1)$.

- $\ \, \textbf{0} \ \, \gamma_1 \leftarrow \texttt{select}_\texttt{gamma}(D_N, \theta_0)$
- **Output** Confidence interval for $\theta_{\star,j}$ is given by

$$C_{N,j}(D_N) = \left(\theta_{N,j} \pm z_{\frac{\alpha}{2}}\sqrt{\frac{\gamma_1}{N}}\right)$$

• Joint inference on $\{\theta_j\}_{j=1}^p$ is also possible!

How to select γ_1 ?

Two approaches were considered:

- Heuristic based on asymptotics:
 - For γ_1 large, $\Sigma_{\text{SGD}} \approx \frac{\gamma_1}{2}I$.
 - For N large, $\Sigma_{\text{SGD}} \approx \text{Var}(\sqrt{N}\theta_N)$.
 - Combining both

$$\frac{p}{2}\gamma_1\approx {\rm Tr}({\rm Var}(\sqrt{N}\theta_N))$$

- Linear regression of $\text{Tr}(\text{Var}(\sqrt{N}\theta_N))$ with respect to γ_1 will give a coefficient around p/2 with high confidence.
- Slowly increase γ_1 till regression coefficients is stabilized around p/2.
- Inverse power iteration: Estimate the maximum eigenvalue of the inverse of the Fisher information matrix F⁻¹_{*} without explicitly computing the inverses.
 - Future work: more efficient learning rate selection!

Simulation Studies 1: Coverage Rate

- Features are sampled as $X_i \sim N_p(0, I_p)$
- True parameter θ_{\star} are set to be $\theta_{\star,i} = 2(-1)^i e^{-.7i}$.

Linear Model	Sample (n) /Dimension (p)	One-pass SGD	MLE
Coverage Rate	$n=10^4$, $p=50$	96.74	94.75
(%)	$n=10^5$, $p=500$	96.81	95.07
Average Length	$n=10^4$, $p=50$	4.38	3.93
$(\times 10^{-2})$	$n = 10^5$, $p = 500$	1.40	1.24

Logistic Model	Sample (n) /Dimension (p)	One-pass SGD	MLE
Coverage Rate	$n = 10^4$, $p = 50$ $m = 10^5$, $m = 500$	96.68 07.31	95.14
(/0)	$n = 10^{\circ}, p = 500^{\circ}$	97.51	94.92
Average Length $(\times 10^{-2})$	$n = 10^{-1}, p = 50$ $n = 10^{5}, p = 500$	3.55	8.91 2.80

Sample (n) /Dimension (p)	Cov Rate (%)	Avg Length ($ imes 10^{-2}$)
$n=10^5$, $p=2\cdot 10^3$	97.82	1.59
$n=10^5$, $p=4\cdot 10^3$	98.36	1.78

- Standard MLE library in the R doesn't scale to the above setting.
- One-pass SGD is 21× faster than the MLE; e.g., in the R language, this amounts 0.006 seconds (SGD) vs 0.128 seconds (MLE) for $N = 10^4$, p = 100.

Further Comments

- The methodology performs well in our empirical evaluations, achieving near-nominal coverage intervals scaling up to 20× as many parameters as other SGD-based inference methods.
- The main weakness of the methodology is that it tends to overcover. In particular, the larger the condition number of F_{*}, the worse the over-coverage rates are ⇒ However, over-coverage can be bounded. In the case of significance level of 0.05 (or 0.1), the maximum over-coverage is 0.044 (or 0.08). [Chee et al., 2023].
- More experiments with diverse features, parameter configurations, and comparisons with other SGD-based inferences are available in the paper [Chee et al., 2023].
- All introduced methodologies can be used with an implicit SGD algorithm for stability [Toulis et al., 2017].
- R code available at: https://github.com/jerry-chee/SGDInference.

References

Chee, J., Kim, H., and Toulis, P. (2023).

"plus/minus the learning rate": Easy and scalable statistical inference with sgd. In *International Conference on Artificial Intelligence and Statistics*, pages 2285–2309. PMLR.

Ljung, L., Pflug, G., and Walk, H. (1992).

Stochastic approximation and optimization of random systems, volume 17. Springer.

Toulis, P., Airoldi, E. M., et al. (2017).

Asymptotic and finite-sample properties of estimators based on stochastic gradients.

The Annals of Statistics, 45(4):1694–1727.

Statistical analysis of stochastic gradient methods for generalized linear models. In 31st International Conference on Machine Learning.