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Set up

Dy = {(X;,Y;)}Y,: Observed data

X;: Covariate of unit ¢

Y;: Outcome variable of interest for unit 4

(X;,Y;): i.i.d data distributed according to pg,

00; X,Y) = —logpe(X,Y) : negative log-likelihood (loss)
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Goal of statistical inference

Based on data, construct a confidence region C'y(Dy) such that

lim ]P’(G* S CN(DN)) >1—a«a
N—oo

for some desired significance level a € (0,1).
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Standard approach: MLE

In standard approach, the construction relies on asymptotic result of the
form v/N (O — 6,) % N, (0, F1), where f is the maximum likelihood
estimator (MLE); i.e.,

N
In = i Y, X
On argr@rg@n;E(G, . OF

and Fy, = E[V{(0,;Y, X)VL(0,;Y, X) ] is the celebrated Fisher
information matrix.
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Issues in the standard approach

In large data set,

o Computation of A is expensive!

» Newton-Raphson, EM algorithm, or quasi-Newton methods scales at a
rate of O(Np'+)

@ Estimation of F} is notoriously challenging!

» Standard estimators of covariance matrices do not scale well and are
often ill-conditioned or non-invertible.
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Stochastic gradient descent (SGD) estimator

Iteratively defined as:
Hn = enfl - ’YnVE(enfl; Yln7 Xln)a

where I,, ~ U{1,..., N} is a random datapoint, -, is the learning rate
sequence, and the gradient V/{ is with respect to 6.

@ Under mild conditions, SGD converges to Oy as n — 0o

@ Oy, the estimator obtained after NV iterations is known as the
one-pass SGD estimator.
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Asymptotic result of one-pass SGD estimator

Under regularity conditions, one-pass SGD satisfies
[Toulis et al., 2017, Ljung et al., 1992]:

VN(Ox — 0,) % N, (0, Sscp),

where
Ysep =11 (271 Fe — I) 7' FL.

(It is assumed that ~; is large enough such that 2, F, — I > 0.)
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Key idea

@ The asymptotic covariance depends on the initial learning rate ~1,
which we can choose.

@ The eigenvalues of Yg¢p are of the form
1A

2"}/1)\j -1’

where ); is the jth eigenvalue of the F,.

@ Notice

2
: YiAj (%)
1 — /= 1 1
“/11—I>n00 2’)/1)\j — 1/ 2 = ( )

which implies the uniform bound on Ysgp.
@ (1) is the basis of our key idea.
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Backbone theory

Theorem

Let Oy, denote the j-th component of Oy, for j = 1,...,p. Suppose that
y1 > 1/minj{\;}, then viI — Xsgp > 0. Define the interval

CNJ'(DN) = [HN,]‘ —2%1/%, 9N,j +Z§1/7\;:| ,

where za = ®~1(1 — «/2) is the critical value of the standard normal.
Then, forevery j=1,...,p,

13?55‘513(0*’]' € Cn;(Dn)) > 1-a.

@ The key step in constructing confidence intervals is now the
estimation of the minimum eigenvalue of Fj.
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Plus-minus the learning rate

Data: Dy, Initial state: 6y, Significance level: o € (0,1).

Q 71 < select_gamma(Dy,0p)
Q 91\7 <— SGD(’yl, DN, 90)
© Confidence interval for 0, ; is given by

CNJ'(DN) = <9N,j + Z% 7\})

o Joint inference on {0;}"_, is also possible!
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How to select 17

Two approaches were considered:
© Heuristic based on asymptotics:
» For 71 large, Ysgp ~ %I.
» For N large, ¥sgp ~ Var(v/NOy).
» Combining both

g’Yl ~ Tr(Var(vV'NOy))

» Linear regression of Tr(Var(v/ N6y)) with respect to 1 will give a
coefficient around p/2 with high confidence.
» Slowly increase 7, till regression coefficients is stabilized around p/2.

@ Inverse power iteration: Estimate the maximum eigenvalue of the
inverse of the Fisher information matrix ! without explicitly
computing the inverses.

o Future work: more efficient learning rate selection!
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Simulation Studies 1: Coverage Rate

o Features are sampled as X; ~ N,(0, 1)

o True parameter 6, are set to be 6, ; = 2(—1)’e

i,—.71

Linear Model Sample (n)/Dimension (p)  One-pass SGD  MLE
Coverage Rate n=10% p =50 96.74 94.75
(%) n = 10°, p = 500 96.81 95.07
Average Length n =104 p=>50 4.38 3.93
(x1072) n = 10°, p = 500 1.40 1.24
Logistic Model Sample (n)/Dimension (p)  One-pass SGD  MLE
Coverage Rate n =104 p=>50 96.68 95.14
(%) n = 10°, p = 500 97.31 94.92
Average Length n =104 p=>50 11.17 8.91
(x1072) n = 10°, p = 500 3.55 2.80
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Simulation Studies 2: Scalability and Computational cost

Sample (n)/Dimension (p)  Cov Rate (%)  Avg Length (x107?)

n=10°p=2-103 97.82 1.59
n=10%p=4-103 98.36 1.78

@ Standard MLE library in the R doesn’t scale to the above setting.

@ One-pass SGD is 21 x faster than the MLE; e.g., in the R language,
this amounts 0.006 seconds (SGD) vs 0.128 seconds (MLE) for
N = 10% p = 100.
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Further Comments

The methodology performs well in our empirical evaluations,
achieving near-nominal coverage intervals scaling up to 20x as many
parameters as other SGD-based inference methods.

The main weakness of the methodology is that it tends to overcover.
In particular, the larger the condition number of F, the worse the
over-coverage rates are = However, over-coverage can be bounded.
In the case of significance level of 0.05 (or 0.1), the maximum
over-coverage is 0.044 (or 0.08). [Chee et al., 2023].

More experiments with diverse features, parameter configurations,
and comparisons with other SGD-based inferences are available in the
paper [Chee et al., 2023].

All introduced methodologies can be used with an implicit SGD
algorithm for stability [Toulis et al., 2017].

R code available at: https://github.com/jerry-chee/SGDInference.
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https://github.com/jerry-chee/SGDInference
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