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Set up

DN = {(Xi, Yi)}Ni=1: Observed data

Xi: Covariate of unit i

Yi: Outcome variable of interest for unit i

(Xi, Yi): i.i.d data distributed according to pθ⋆

ℓ(θ;X,Y ) = − log pθ(X,Y ) : negative log-likelihood (loss)
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Goal of statistical inference

Based on data, construct a confidence region CN (DN ) such that

lim
N→∞

P(θ⋆ ∈ CN (DN )) ≥ 1− α

for some desired significance level α ∈ (0, 1).
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Standard approach: MLE

In standard approach, the construction relies on asymptotic result of the

form
√
N(θ̂N − θ⋆)

d−→ Np(0, F
−1
⋆ ), where θ̂N is the maximum likelihood

estimator (MLE); i.e.,

θ̂N = argmin
θ∈Θ

N∑
i=1

ℓ(θ;Yi, Xi),

and F⋆ = E[∇ℓ(θ⋆;Y,X)∇ℓ(θ⋆;Y,X)⊤] is the celebrated Fisher
information matrix.
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Issues in the standard approach

In large data set,

Computation of θ̂N is expensive!
▶ Newton-Raphson, EM algorithm, or quasi-Newton methods scales at a

rate of O(Np1+ϵ)

Estimation of F⋆ is notoriously challenging!
▶ Standard estimators of covariance matrices do not scale well and are

often ill-conditioned or non-invertible.
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Stochastic gradient descent (SGD) estimator

Iteratively defined as:

θn = θn−1 − γn∇ℓ(θn−1;YIn , XIn),

where In ∼ U{1, . . . , N} is a random datapoint, γn is the learning rate
sequence, and the gradient ∇ℓ is with respect to θ.

Under mild conditions, SGD converges to θ̂N as n→∞
θN , the estimator obtained after N iterations is known as the
one-pass SGD estimator.
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Asymptotic result of one-pass SGD estimator

Under regularity conditions, one-pass SGD satisfies
[Toulis et al., 2017, Ljung et al., 1992]:

√
N(θN − θ⋆)

d−→ Np(0,ΣSGD),

where
ΣSGD = γ21(2γ1F⋆ − I)−1F⋆.

(It is assumed that γ1 is large enough such that 2γ1F⋆ − I ≻ 0.)
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Key idea

The asymptotic covariance depends on the initial learning rate γ1,
which we can choose.

The eigenvalues of ΣSGD are of the form

γ21λj

2γ1λj − 1
,

where λj is the jth eigenvalue of the F⋆.

Notice

lim
γ1→∞

γ21λj

2γ1λj − 1
/
(γ1
2

)
→ 1, (1)

which implies the uniform bound on ΣSGD.

(1) is the basis of our key idea.
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Backbone theory

Theorem

Let θN,j , denote the j-th component of θN , for j = 1, . . . , p. Suppose that
γ1 ≥ 1/minj{λj}, then γ1I − ΣSGD ≻ 0. Define the interval

CN,j(DN ) =

[
θN,j − zα

2

√
γ1
N

, θN,j + zα
2

√
γ1
N

]
,

where zα
2
= Φ−1(1− α/2) is the critical value of the standard normal.

Then, for every j = 1, . . . , p,

lim inf
N→∞

P
(
θ⋆,j ∈ CN,j(DN )

)
≥ 1− α.

The key step in constructing confidence intervals is now the
estimation of the minimum eigenvalue of F⋆.
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Plus-minus the learning rate

Data: DN , Initial state: θ0, Significance level: α ∈ (0, 1).

1 γ1 ← select gamma(DN , θ0)

2 θN ← SGD(γ1, DN , θ0)

3 Confidence interval for θ⋆,j is given by

CN,j(DN ) =

(
θN,j ± zα

2

√
γ1
N

)
Joint inference on {θj}pj=1 is also possible!
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How to select γ1?

Two approaches were considered:
1 Heuristic based on asymptotics:

▶ For γ1 large, ΣSGD ≈ γ1

2 I.
▶ For N large, ΣSGD ≈ Var(

√
NθN ).

▶ Combining both
p

2
γ1 ≈ Tr(Var(

√
NθN ))

▶ Linear regression of Tr(Var(
√
NθN )) with respect to γ1 will give a

coefficient around p/2 with high confidence.
▶ Slowly increase γ1 till regression coefficients is stabilized around p/2.

2 Inverse power iteration: Estimate the maximum eigenvalue of the
inverse of the Fisher information matrix F−1

⋆ without explicitly
computing the inverses.

Future work: more efficient learning rate selection!
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Simulation Studies 1: Coverage Rate

Features are sampled as Xi ∼ Np(0, Ip)
True parameter θ⋆ are set to be θ⋆,i = 2(−1)ie−.7i.

Linear Model Sample (n)/Dimension (p) One-pass SGD MLE

Coverage Rate n = 104, p = 50 96.74 94.75
(%) n = 105, p = 500 96.81 95.07

Average Length n = 104, p = 50 4.38 3.93
(×10−2) n = 105, p = 500 1.40 1.24

Logistic Model Sample (n)/Dimension (p) One-pass SGD MLE

Coverage Rate n = 104, p = 50 96.68 95.14
(%) n = 105, p = 500 97.31 94.92

Average Length n = 104, p = 50 11.17 8.91
(×10−2) n = 105, p = 500 3.55 2.80
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Simulation Studies 2: Scalability and Computational cost

Sample (n)/Dimension (p) Cov Rate (%) Avg Length (×10−2)

n = 105, p = 2 · 103 97.82 1.59
n = 105, p = 4 · 103 98.36 1.78

Standard MLE library in the R doesn’t scale to the above setting.

One-pass SGD is 21× faster than the MLE; e.g., in the R language,
this amounts 0.006 seconds (SGD) vs 0.128 seconds (MLE) for
N = 104, p = 100.
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Further Comments

The methodology performs well in our empirical evaluations,
achieving near-nominal coverage intervals scaling up to 20× as many
parameters as other SGD-based inference methods.

The main weakness of the methodology is that it tends to overcover.
In particular, the larger the condition number of F⋆, the worse the
over-coverage rates are ⇒ However, over-coverage can be bounded.
In the case of significance level of 0.05 (or 0.1), the maximum
over-coverage is 0.044 (or 0.08). [Chee et al., 2023].

More experiments with diverse features, parameter configurations,
and comparisons with other SGD-based inferences are available in the
paper [Chee et al., 2023].

All introduced methodologies can be used with an implicit SGD
algorithm for stability [Toulis et al., 2017].

R code available at: https://github.com/jerry-chee/SGDInference.
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