Overview

e We develop a statistical inference procedure using stochastic
gradient descent (SGD)-based confidence intervals.

* These intervals are of the simplest form:
v N, & 2 Y / N.

e This construction is simple as it relies only on properly selecting
the learning rate (7).

* The procedure achieves near-nominal coverage intervals scaling
up to 20x more parameters than other SGD-based methods.

Motivation: Prediction vs Inference

—  Param error
Pred error

Multicollinearity degrades parameter estimation error but not
pbrediction error.

Background

Statistical inference setup. Consider data (Y, X) € R? x RP?, neg-
ative log-likelihood ¢, and unknown model parameters:

0, = arg min E[£(0;Y, X)].

The empirical loss minimizer ) N = arg mingece Z,fil 0(0;Y;, X;) ad-
mits weak convergence results of the form

VN@Oy —6,) S N, (0, F7 Y, (1)

where F. is the Fisher information matrix. This can be used to con-
struct 95% confidence intervals (ClIs):

On i+ 2\/ F*_,jlj /N. [MLE-based inference] (2)

But, 6 cannot be efficiently computed in large data sets.

SGD: A scalable approach. Instead, we may look at SGD:
Hn — Hn—l _’ang(en—l;ylnaXln)a (3)

with I,, ~ U{1... N} is arandom datapoint, v, = 1 /n the learning
rate. There are two potential choices. Which one should we use?
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Choice 1: Averaged SGD, 0y

O = ~ Z,ﬁil 0; has optimal weak convergence of Eq. (1). Most
SGD-based inference uses the theoretical optimality of 6, and con-
struct CI as in Eq. (2).

Other methods are not simple. Practically, these methods require
significant data-dependent calibration. For example, Chen et al.
2020 requires tuning their (a) number of batches, (b) multiple batch
sizes, (c) decorrelation parameter, and (d) learning rate.

Choice 2: One-Pass SGD, 05 (Our Method)

We propose an inference method based on 0y in Algorithm 1. Un-
der regularity conditions (Toulis et al., 2017, Ljung et al., 1992, I1.8),

VN(Oy —0,) S N,(0,%,), where ¥, =122 E, — )" 'F,. (4)

Our method is simple.

1. The asymptotic variance X, is known in closed form in Eq. (4).
2. We can bound >, < ~{ I which only depends on the learning rate.

Pros. We only need to estimate a single parameter (v;), instead of
the p x p covariance matrix.

Cons. Our CIs are conservative and exhibit some overcoverage.
We still need to select 77

Main Idea

Let A\, be the j-th eigenvalue of F,. Then, the corresponding eigen-
value of X, is 77\, /(2y1\; — 1), and thus satisfies:
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The limit implies a uniform bound on X, and a construction of con-
servative confidence intervals.

Theorem 3.1. Suppose that v; > 1/ min;{\;}. Then, yiI — 3, > 0.

Forevery j =1,...,p, the confidence intervals C ~.; In Algorithm 1
satisty:

liminf P(6,; € Cn;(Dn)) > 1— a.

N — 00

Remark 1. The bound for ~7 is standard for O(1/n) convergence
of SGD; e.g., see Section 3.1 of Moulines and Bach, 2011.

Remark 2. Joint inference for all or a subset of components of 0, is
also possible. See Thm 3.2 in paper.

Remark 3. Overcoverage depends on the condition number of F},
and misspecification of the learning rate (p). See Thm. 3.3 in paper.

Contact: hwkim@uchicago.edu

Concrete Method & Implementation
Algorithm 1 Scalable inference with one-pass SGD, 0.
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Input: Data Dy, SGD procedure of Eq. (3), 8y, a € (0, 1).
Vi < select_gamma(Dy, )

On < SGD(v7, D, 60p)

Output: Confidence interval for 0, ; with

Cn,i(Dn) = <9N,j + zg \/WT/N> ,

and Za is the critical value of the standard normal.
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Selecting ;. (a) A good estimate of min;{)\,;} already exists.
(b) Selection of v; based on asymptotic results on eigen (3, ).
(c) Selection based on inverse power iteration of [ .

Results

Code: github.com/jerry-chee/SGDInference

One-Pass SGD MLE Avg SGD"

CovRate Avglen CovRate Avglen CovRate Avglen
(%) (x1077) (%) (x1072) (%) (x1077)

96.01 1.31 95.05 1.24 93.15 1.35
EC |96.12 1.42 94.97 1.34 93.19 1.52
T 198.02 2.18 95.02 1.60 90.83 7.71

logistic Id |97.34 3.47 94.89 2.80 90.84 4.87
EC | 97.45 3.67 94.99 2.99 90.27 9.75
T |97.73 4.75 95.05 3.47 90.83 7.71

Selected simulations(500 trials,p=100,N=1e5). Assume min;{\;} is known.

model >,

linear

CovRate (%) AvglLen (x10~7)

97.18 1.47
97.82 1.59
98.36 1.78

Large-scale simulations (500 trials). Inverse power iteration to select 77
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