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Overview
• We develop a statistical inference procedure using stochastic

gradient descent (SGD)-based confidence intervals.
• These intervals are of the simplest form:

θN,j ± 2
√
γ/N.

• This construction is simple as it relies only on properly selecting
the learning rate (γ).

• The procedure achieves near-nominal coverage intervals scaling
up to 20×more parameters than other SGD-based methods.

Motivation: Prediction vs Inference
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Multicollinearity degrades parameter estimation error but not
prediction error.

Background
Statistical inference setup. Consider data (Y,X) ∈ Rd × Rp, neg-
ative log-likelihood ℓ, and unknown model parameters:

θ⋆ = argmin
θ∈Θ

E[ℓ(θ;Y,X)].

The empirical loss minimizer θ̂N = argminθ∈Θ

∑N
i=1 ℓ(θ;Yi, Xi) ad-

mits weak convergence results of the form
√
N(θ̂N − θ⋆)

d→ Np(0, F
−1
⋆ ), (1)

where F⋆ is the Fisher information matrix. This can be used to con-
struct 95% confidence intervals (CIs):

θ̂N,j ± 2
√
F−1
⋆,jj/N. [MLE-based inference] (2)

But, θ̂N cannot be efficiently computed in large data sets.

SGD: A scalable approach. Instead, we may look at SGD:

θn = θn−1 − γn∇ℓ(θn−1;YIn , XIn), (3)

with In ∼ U{1 . . . N} is a random datapoint, γn = γ1/n the learning
rate. There are two potential choices. Which one should we use?

Choice 1: Averaged SGD, θ̄N
θ̄N = 1

N

∑N
i=1 θi has optimal weak convergence of Eq. (1). Most

SGD-based inference uses the theoretical optimality of θ̄N , and con-
struct CI as in Eq. (2).

Other methods are not simple. Practically, these methods require
significant data-dependent calibration. For example, Chen et al.
2020 requires tuning their (a) number of batches, (b) multiple batch
sizes, (c) decorrelation parameter, and (d) learning rate.

Choice 2: One-Pass SGD, θN (Our Method)
We propose an inference method based on θN in Algorithm 1. Un-
der regularity conditions (Toulis et al., 2017, Ljung et al., 1992, II.8),
√
N(θN − θ⋆)

d→ Np(0,Σ⋆), where Σ⋆ = γ2
1(2γ1F⋆ − I)−1F⋆. (4)

Our method is simple.

1. The asymptotic variance Σ⋆ is known in closed form in Eq. (4).
2. We can bound Σ⋆ ⪯ γ∗

1I which only depends on the learning rate.

Pros. We only need to estimate a single parameter (γ∗
1 ), instead of

the p× p covariance matrix.
Cons. Our CIs are conservative and exhibit some overcoverage.
We still need to select γ∗

1 .

Main Idea
Let λj be the j-th eigenvalue of F⋆. Then, the corresponding eigen-
value of Σ⋆ is γ2

1λj/(2γ1λj − 1), and thus satisfies:

γ2
1λj

2γ1λj − 1
/
(γ1
2

)
→ 1.

The limit implies a uniform bound on Σ⋆, and a construction of con-
servative confidence intervals.

Theorem 3.1. Suppose that γ∗
1 ≥ 1/minj{λj}. Then, γ∗

1I − Σ⋆ ≻ 0.
For every j = 1, . . . , p, the confidence intervals CN,j in Algorithm 1
satisfy:

lim inf
N→∞

P
(
θ⋆,j ∈ CN,j(DN )

)
≥ 1− α.

Remark 1. The bound for γ∗
1 is standard for O(1/n) convergence

of SGD; e.g., see Section 3.1 of Moulines and Bach, 2011.

Remark 2. Joint inference for all or a subset of components of θ⋆ is
also possible. See Thm 3.2 in paper.

Remark 3. Overcoverage depends on the condition number of F⋆,
and misspecification of the learning rate (ρ). See Thm. 3.3 in paper.

Concrete Method & Implementation
Algorithm 1 Scalable inference with one-pass SGD, θN .

Input: Data DN , SGD procedure of Eq. (3), θ0, α ∈ (0, 1).
γ∗
1 ← select_gamma(DN , θ0)

θN ← SGD(γ∗
1 , DN , θ0)

Output: Confidence interval for θ⋆,j with

CN,j(DN ) =

(
θN,j ± zα

2

√
γ∗
1/N

)
,

and zα
2

is the critical value of the standard normal.
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Selecting γ∗
1 . (a) A good estimate of minj{λj} already exists.

(b) Selection of γ∗
1 based on asymptotic results on eigen(Σ⋆).

(c) Selection based on inverse power iteration of F−1
⋆ .

Results
Code: github.com/jerry-chee/SGDInference

One-Pass SGD MLE Avg SGDa

model Σx
CovRate AvgLen CovRate AvgLen CovRate AvgLen
(%) (×10−2) (%) (×10−2) (%) (×10−2)

linear Id 96.01 1.31 95.05 1.24 93.15 1.35
EC 96.12 1.42 94.97 1.34 93.19 1.52
T 98.02 2.18 95.02 1.60 90.83 7.71

logistic Id 97.34 3.47 94.89 2.80 90.84 4.87
EC 97.45 3.67 94.99 2.99 90.27 9.75
T 97.73 4.75 95.05 3.47 90.83 7.71

Selected simulations(500 trials,p=100,N=1e5). Assume minj{λj} is known.

p N CovRate (%) AvgLen (×10−2)

1e3 1e5 97.18 1.47
2e3 1e5 97.82 1.59
4e3 1e5 98.36 1.78

Large-scale simulations (500 trials). Inverse power iteration to select γ∗
1 .

aChen et al. 2020
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