

"Plus/minus the learning rate": Easy and Scalable Statistical Inference with SGD

Jerry Chee, Hwanwoo Kim, & Panos Toulis

Overview

- We develop a statistical inference procedure using stochastic gradient descent (SGD)-based confidence intervals.
- These intervals are of the **simplest form**:

$$\theta_{N,j} \pm 2\sqrt{\gamma/N}.$$

- This construction is **simple** as it relies only on properly selecting the learning rate (γ).
- The procedure achieves **near-nominal coverage intervals** scaling up to $20 \times$ more parameters than other SGD-based methods.

Motivation: Prediction vs Inference

Multicollinearity degrades parameter estimation error but not prediction error.

Background

Statistical inference setup. Consider data $(Y, X) \in \mathbb{R}^d \times \mathbb{R}^p$, negative log-likelihood ℓ , and unknown model parameters:

$$\theta_{\star} = \arg\min_{\theta\in\Theta} \mathrm{E}[\ell(\theta; Y, X)].$$

The empirical loss minimizer $\hat{\theta}_N = \arg \min_{\theta \in \Theta} \sum_{i=1}^N \ell(\theta; Y_i, X_i)$ admits weak convergence results of the form

 $\sqrt{N}(\widehat{\theta}_N - \theta_\star) \xrightarrow{\mathrm{d}} N_p(0, F_\star^{-1}),$

where F_{\star} is the Fisher information matrix. This can be used to construct 95% confidence intervals (CIs):

 $\hat{\theta}_{N,j} \pm 2\sqrt{F_{\star,jj}^{-1}/N}$. [MLE-based inference]

But, $\hat{\theta}_N$ cannot be efficiently computed in large data sets.

SGD: A scalable approach. Instead, we may look at SGD:

$$\theta_n = \theta_{n-1} - \gamma_n \nabla \ell(\theta_{n-1}; Y_{I_n}, X_{I_n}),$$

with $I_n \sim U\{1 \dots N\}$ is a random datapoint, $\gamma_n = \gamma_1/n$ the learning rate. There are two potential choices. Which one should we use?

(2)

(3)

Choice 1: Averaged SGD, θ_N

 $\bar{\theta}_N = \frac{1}{N} \sum_{i=1}^N \theta_i$ has optimal weak convergence of Eq. (1). Most SGD-based inference uses the theoretical optimality of $\bar{\theta}_N$, and construct CI as in Eq. (2).

Other methods are not simple. Practically, these methods require significant data-dependent calibration. For example, Chen et al. 2020 requires tuning their (a) number of batches, (b) multiple batch sizes, (c) decorrelation parameter, and (d) learning rate.

Choice 2: One-Pass SGD, θ_N (Our Method)

We propose an inference method based on θ_N in Algorithm 1. Under regularity conditions (Toulis et al., 2017, Ljung et al., 1992, II.8),

 $\sqrt{N}(\theta_N - \theta_\star) \xrightarrow{d} N_p(0, \Sigma_\star), \text{ where } \Sigma_\star = \gamma_1^2 (2\gamma_1 F_\star - I)^{-1} F_\star.$ (4)

Our method is simple.

1. The asymptotic variance Σ_{\star} is known in closed form in Eq. (4). 2. We can bound $\Sigma_{\star} \preceq \gamma_1^* I$ which only depends on the learning rate.

Pros. We only need to estimate a *single* parameter (γ_1^*), instead of the $p \times p$ covariance matrix.

Cons. Our CIs are conservative and exhibit some overcoverage. We still need to select γ_1^* .

Main Idea

Let λ_j be the *j*-th eigenvalue of F_{\star} . Then, the corresponding eigenvalue of Σ_{\star} is $\gamma_1^2 \lambda_j / (2\gamma_1 \lambda_j - 1)$, and thus satisfies:

 $\frac{\gamma_1^2 \lambda_j}{2\gamma_1 \lambda_j - 1} / \left(\frac{\gamma_1}{2}\right) \to 1.$

The limit implies a uniform bound on Σ_{\star} , and a construction of conservative confidence intervals.

Theorem 3.1. Suppose that $\gamma_1^* \ge 1/\min_j \{\lambda_j\}$. Then, $\gamma_1^* I - \Sigma_* \succ 0$. For every j = 1, ..., p, the confidence intervals $C_{N,j}$ in Algorithm 1 satisfy:

 $\liminf_{N \to \infty} P(\theta_{\star,j} \in C_{N,j}(D_N)) \ge 1 - \alpha.$

Remark 1. The bound for γ_1^* is standard for O(1/n) convergence of SGD; e.g., see Section 3.1 of Moulines and Bach, 2011.

Remark 2. Joint inference for all or a subset of components of θ_{\star} is also possible. See Thm 3.2 in paper.

Remark 3. Overcoverage depends on the condition number of F_{\star} , and misspecification of the learning rate (ρ). See Thm. 3.3 in paper.

Contact: hwkim@uchicago.edu

Concrete Method & Implementation

Algorithm 1 Scalable inference with one-pass SGD, θ_N .

Input: Data D_N , SGD procedure of Eq. (3), θ_0 , $\alpha \in (0, 1)$. $\gamma_1^* \leftarrow \texttt{select}_\texttt{gamma}(D_N, \theta_0)$ $\theta_N \leftarrow \text{SGD}(\gamma_1^*, D_N, \theta_0)$ **Output:** Confidence interval for $\theta_{\star,j}$ with

and $z_{\frac{\alpha}{2}}$ is the critical value of the standard normal.

(c) Selection based on inverse power iteration of F_{\star}^{-1} .

Results

Code: github.com/jerry-chee/SGDInference

	One-Pass SGD		MLE		Avg SGD ^a	
Σ_x	CovRate (%)	AvgLen $(\times 10^{-2})$	CovRate (%)	AvgLen $(\times 10^{-2})$	CovRate (%)	AvgLen $(\times 10^{-2})$
Id	96.01	1.31	95.05	1.24	93.15	1.35
EC	96.12	1.42	94.97	1.34	93.19	1.52
T	98.02	2.18	95.02	1.60	90.83	7.71
Id	97.34	3.47	94.89	2.80	90.84	4.87
EC	97.45	3.67	94.99	2.99	90.27	9.75
Т	97.73	4.75	95.05	3.47	90.83	7.71
	Id EC T Id	Σ_x CovRate (%)Id96.01EC96.12T98.02Id97.34EC97.45	Σ_x CovRate CovRate (%)AvgLen (×10 ⁻²)Id96.011.31EC96.121.42T98.022.18Id97.343.47EC97.453.67	Σ_x CovRate (%)AvgLen (×10^{-2})CovRate (%)Id96.011.3195.05EC96.121.4294.97T98.022.1895.02Id97.343.4794.89EC97.453.6794.99	Σ_x CovRate (%)AvgLen (×10^{-2})CovRate (%)AvgLen (×10^{-2})Id96.011.3195.051.24EC96.121.4294.971.34T98.022.1895.021.60Id97.343.4794.892.80EC97.453.6794.992.99	Σ_x CovRate (%)AvgLen (×10^{-2})CovRate (%)AvgLen (×10^{-2})CovRate (%)Id96.011.3195.051.2493.15EC96.121.4294.971.3493.19T98.022.1895.021.6090.83Id97.343.4794.892.8090.84EC97.453.6794.992.9990.27

1e31e597.181.472e31e597.821.594e31e598.361.78	р	Ν	CovRate (%)	AvgLen ($\times 10^{-2}$)
	1e3	1e5	97.18	1.47
4e3 1e5 98.36 1.78	2e3	1e5	97.82	1.59
	4e3	1e5	98.36	1.78

Large-scale simulations (500 trials). Inverse power iteration to select γ_1^* .

^{*a*}Chen et al. 2020

 $C_{N,j}(D_N) = \left(\theta_{N,j} \pm z_{\frac{\alpha}{2}} \sqrt{\gamma_1^*/N}\right),$

Selecting γ_1^* . (a) A good estimate of $\min_j \{\lambda_j\}$ already exists. (b) Selection of γ_1^* based on asymptotic results on eigen (Σ_*) .